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Abstract
We consider the effect of photoinduced optical anisotropy (POA) in
azopolymers. Using a unified approach to the kinetics of photo-reorientation
we discuss the assumptions underlying the known theoretical models of
POA and formulate a tractable phenomenological model in terms of angular
redistribution probabilities and order parameter correlation functions. The
model takes into account biaxiality effects and long-term stability of POA
in azopolymers. It predicts that under certain conditions two different
mechanisms, photo-orientation and photoselection, will dominate POA
depending on the wavelength of pumping light. By using available experimental
data, we employ the model to compute dependences of principal absorption
coefficients on the illumination time. Our calculations clearly indicate the
different regimes of POA and the numerical results are found to be in good
agreement with the experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ability of some photosensitive materials to become dichroic and birefringent under the
action of light is known as the effect of photoinduced optical anisotropy (POA). The effect
provides a means of having light-controlled anisotropy and the materials that exhibit POA are
very promising for use in many photonic applications [1, 2]. The side-chain polymers that
contain covalently linked photochromic moieties such as azobenzene derivatives are among the
materials that show POA of extremely high efficiency. For this reason light induced ordering
processes in these polymers—the so-called azopolymers—have been intensively studied in the
last decade.

A typical experimental procedure to induce optical anisotropy in azopolymers consists
in irradiating a sample with polarized UV light. In this case the accepted though not very
well understood mechanism of POA assumes that the key processes involved are induced
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trans–cis-photoisomerization and subsequent thermal and/or photochemical cis–trans-back-
isomerization of the azobenzene moieties.

These trans–cis–trans-photoisomerization cycles are accompanied by rotations of the
azobenzene chromophores. Since the transition dipole moment of the azobenzene moiety is
directed along its long molecular axis, the fragments oriented perpendicular to the incident
actinic light polarization vector, E, are almost inactive. The long axes of the azobenzene
fragments tend to become oriented along directions normal to the polarization vector E.
Non-photoactive groups then undergo reorientation due to co-operative motion or dipole
interaction [3–5].

The above scenario, initially suggested in [6], assumes that the cis-state
becomes temporary populated during photoisomerization but reacts immediately back to
thermodynamically stable trans-isomeric form. In this regime—the so-called photo-
orientation mechanism [7]—the lifetime of cis-isomers is short and POA is mainly due to
the angular redistribution of the long axes of the trans-groups during the trans–cis–trans-
isomerization cycles.

Another limiting case occurs when the cis-states are long living and POA is caused by
the selective depletion of the trans-isomeric form when reaching the photosaturated state [8].
This regime of POA is known as the mechanism of angular hole burning (photoselection).

In both cases the effect is primarily governed by the dependence of photoisomerization
rates on orientation of the photoactive groups. We have also seen that the physical
characteristics of POA can be different depending on a number of additional factors such as the
lifetime of the cis-form. These factors will determine the kinetics of POA that describes how
the amount of photoinduced anisotropy characterized by absorption dichroism or birefringence
evolves in time upon illumination and after switching it off.

As opposed to the reversible POA, where anisotropy disappears after switching off the
irradiation [2, 6, 7, 9–11], POA can be long-term stable. This is the case for POA in liquid
crystalline (LC) azopolymers [12–16]. Theoretically, it means that the photo-reorientation
in azopolymers is a non-equilibrium process in a rather complex polymer system and it still
remains a challenge to develop a tractable microscopic theory treating the effect adequately.

The microscopic approach to POA in azopolymers can be rather involved and very
computationally intensive. In particular, the recent results of [17] show that the nonlinear
optical properties of push–pull chromophores embedded in a polymer matrix can be
successfully explained on the basis of quantum chemical calculations with taking into account
electron–vibration anharmonicity of the chromophores.

In this paper we are primarily interested in phenomenological models that can be employed
in studying the kinetics of POA and do not require a sophisticated numerical treatment. Our
theoretical considerations rely on the assumption that reorientation of the azobenzene groups
results in the appearance of a self-consistent anisotropic field that supports the photoinduced
anisotropy. This field is thought of as being caused by anisotropic interactions between
the azobenzene fragments and rearrangement of the main chains and other non-absorbing
fragments.

There are two phenomenological models based on similar assumptions: the mean-field
model proposed in [18, 19] and the model with additional order parameter attributed to the
polymer backbone [4, 5]. Both these models, though they look different, incorporate the long-
term stability by introducing an additional degree of freedom (subsystem) of which the kinetics
reflects the co-operative motion responsible for non-equilibrium behaviour.

In our recent paper [20] we have proposed a model that, in addition to the long-term
stability of POA, takes into account biaxiality of the photoinduced orientational structures
observed in [13, 16, 20–23]. This model was applied to interpret the experimental data on
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POA in the photo-orientation regime for the polymer where the out-of-plane reorientation
of the dye molecules is suppressed. The mean-field theory extended to the case of biaxial
anisotropy was considered in [23].

The aim of this study is to describe the different regimes of POA on the basis of a unified
approach to the kinetics of POA used in [20]. We give more details on the approach and present
the theoretical results for the case of long-living cis-isomeric form and large order parameters.
The layout of the paper is as follows.

In section 2 we discuss the physical assumptions underlying the general structure of
phenomenological models. We show that the known models can be rederived in terms of
the angular redistribution probabilities and formulate a simple model of the photoinduced
ordering in azopolymers. Using the mean-field representation for the angular distribution of
trans-isomers we suggest the approximation for the order parameter correlation functions and
deduce the equations for the order parameter components.

In section 3 we compute the order parameter components and the fractions of the
azobenzene units for different irradiation doses. Then we use the results of numerical analysis to
fit the experimental data on the photoinduced dichroism of absorption. These data demonstrate
that for long-living cis-forms dependences of the absorption dichroism on the illumination time
can be qualitatively different depending on the wavelength of the exciting beam. We find that
the different regimes can be explained by using our model and the calculated dependences are
in good agreement with the data obtained experimentally. Finally, in sections 4 and 5 we draw
together the results and make some concluding remarks.

2. Model

We shall assume that the azobenzene chromophores in the ground state are of trans-form
(trans-molecules) and the orientation of the molecular axis is defined by the unit vector
n̂ = (sin θ cos φ, sin θ sin φ, cos θ), where θ and φ are Euler angles of the unit vector.
The angular distribution of the trans-molecules at time t is characterized by the number
distribution function Ntr (n̂, t). Similarly, the azobenzene groups in the excited state have
the cis-conformation (cis-molecules) and are characterized by the function Ncis (n̂, t). Then
the number of trans- and cis-molecules is given by

Ntr (t) ≡ Nntr (t) =
∫

Ntr (n̂, t) dn̂, (1)

Ncis (t) ≡ Nncis (t) =
∫

Ncis (n̂, t) dn̂, ntr (t) + ncis(t) = 1, (2)

where
∫

dn̂ ≡ ∫ 2π

0 dφ
∫ π

0 sin θ dθ and N is the total number of molecules. The normalized
angular distribution functions, fα(n̂, t), of trans-(α =tr) and cis-(α =cis) molecules can be
conveniently defined by the relation

Nα(n̂, t) = Nnα(t) fα(n̂, t). (3)

We also need to introduce the additional angular distribution function f p(n̂, t)
characterizing the anisotropic field due to interaction between a side chain fragment and
nearby molecules. In particular, this field is affected by collective degrees of freedom of non-
absorbing units such as main chains and determines the angular distribution of the molecules in
the stationary regime. It bears close resemblance to the equilibrium distribution of the mean-
field theories of POA. In [18, 19, 23] this distribution has been assumed to be proportional to
exp(−V (n̂)/kB T ), where V (n̂) is the mean-field potential that depends on the order parameter
tensor.
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In other words, we have the additional subsystem characterized by f p(n̂, t) attributed to
the presence of long-living angular correlations coming from anisotropic interactions between
side-chain groups and collective modes of polymeric environment. For brevity, this subsystem
will be referred to as the polymer system (matrix). We shall write the kinetic rate equations
for Nα(n̂, t) in the form of master equations [24, 25]:

∂ Nα

∂ t
=

[
dNα

dt

]
Diff

+
∑
β �=α

∫
[W (α, n̂|β, n̂′)Nβ(n̂′, t) − W (β, n̂′|α, n̂)Nα(n̂, t)]dn̂′

+ γα

[
Nα(t)

∫
�α−p(n̂, n̂′) f p(n̂

′, t) dn̂′ − Nα(n̂, t)

]
, (4)

where α, β ∈ {tr, cis}.
The first term on the right-hand side of (4) is due to rotational diffusion of molecules in

trans- (α = tr) and cis-(α = cis) conformations. In frictionless models this term is absent and
will be dropped in our subsequent notations.

Now we need to specify the rate of trans–cis-photoisomerization stimulated by the incident
UV light. For the electromagnetic wave linearly polarized along the x-axis the transition rate
can be written as follows [7, 11]:

W (cis, n̂|tr, n̂′) = �t−c(n̂, n̂′)Ptr (n̂
′), (5)

Ptr (n̂) = (h̄ωt )
−1
tr→cis

∑
i, j

σ
(tr)
i j (n̂)Ei E∗

j = qt I (1 + un2
x), (6)

where σ(tr)(n̂) is the tensor of absorption cross section for the trans-molecule oriented
along n̂: σ

(tr)
i j = σ

(tr)
⊥ δi j + (σ

(tr)
‖ − σ

(tr)
⊥ ) ni n j ; u ≡ (σ

(tr)
‖ − σ

(tr)
⊥ )/σ

(tr)
⊥ is the absorption

anisotropy parameter; h̄ωt is the photon energy; 
tr→cis is the quantum yield of the process
and �t−c(n̂, n̂′) describes the angular redistribution of the molecules excited in the cis-state;
I is the pumping intensity and qt ≡ (h̄ωt )

−1
tr→cisσ
(tr)
⊥ .

A similar line of reasoning applies to the cis–trans-transition to yield the expression for
the rate:

W (tr, n̂|cis, n̂′) = γc�
(sp)
c−t (n̂, n̂′) + qc I�(ind)

c−t (n̂, n̂′), (7)

where qc ≡ (h̄ωt )
−1
cis→transσ

(cis), γc ≡ 1/τc, τc is the lifetime of the cis-molecule and
the anisotropic part of the absorption cross section is disregarded, σ

(cis)
‖ = σ

(cis)
⊥ ≡ σ (cis).

Equation (7) implies that the process of angular redistribution for spontaneous and stimulated
transitions can be different. All the angular redistribution probabilities are normalized so as
to meet the standard normalization condition for probability densities:∫

�β−α(n̂, n̂′) dn̂ = 1. (8)

Using the system (4) and the relations (5)–(7) it is not difficult to deduce the equation for
ntr (t):

∂ntr

∂ t
= (γc + qc I )ncis − 〈Ptr 〉tr ntr , (9)

where the angular brackets 〈· · ·〉α stand for averaging over the angles with the distribution
function fα . Owing to the condition (8), this equation does not depend on the form of the
angular redistribution probabilities.

The last square bracketed term on the right-hand side of (4) describes the process that
equilibrates the side-chain absorbing molecules and the polymer system in the absence of
irradiation. The angular redistribution probabilities �α−p(n̂, n̂′) meet the normalization
condition, so that thermal relaxation does not change the total fractions Ntr and Ncis .
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If there is no angular redistribution, then �α−p(n̂, n̂′) = δ(n̂ − n̂′) and both equilibrium
angular distributions f (eq)

tr and f (eq)

cis are equal to f p.
The latter is the case for the mean-field models considered in [18, 19, 23]. In these models

the cis-fragments are assumed to be long living with γc = 0 and γcis = γtr . We can now recover
the models by setting the angular redistribution probabilities �t−c(n̂, n̂′) and �c−t (n̂, n̂′) equal
to the equilibrium distribution, f p = p(n̂), determined by the mean-field potential V (n̂):
p(n̂) ∝ exp(−V/kBT ). So, the mean-field approach introduces the angular redistribution
operators acting as projectors onto the angular distribution of the polymer system. This is the
order-parameter-dependent distribution that characterizes orientation of the azochromophores
after isomerization.

An alternative and a more general approach is to determine the distribution function
f p(n̂, t) from the kinetic equation that can be written in the following form:

∂ f p(n̂, t)

∂ t
= −

∑
α={tr,cis}

γ (α)
p nα(t)

[
f p(n̂, t) −

∫
�p−α(n̂, n̂′) fα(n̂′, t) dn̂′

]
. (10)

Equations for the angular distribution functions ftr (n̂, t) and fcis(n̂, t) can be derived from (4)
by using the relations (5)–(9). The result is as follows:

ncis
∂ fcis

∂ t
= −ntr

[
〈Ptr 〉tr fcis −

∫
�t−c(n̂, n̂′)Ptr (n̂

′) ftr (n̂
′, t) dn̂′

]

− γcisncis

[
fcis −

∫
�cis−p(n̂, n̂′) f p(n̂

′, t) dn̂′
]
, (11)

ntr
∂ ftr

∂ t
= −ntr [Ptr (n̂) − 〈Ptr 〉tr ] ftr + γcncis

∫
�

(sp)
c−t (n̂, n̂′) fcis(n̂

′, t) dn̂′

− (γc + qc I )ncis ftr + qc Incis

∫
�

(ind)
c−t (n̂, n̂′) fcis(n̂

′, t) dn̂′

− γtr ntr

[
ftr −

∫
�tr−p(n̂, n̂′) f p(n̂

′, t) dn̂′
]
. (12)

The system of equations (9) and (10)–(12) can be used as a starting point to formulate
a number of phenomenological models of POA. We have already shown how the mean-field
theories of [18, 19, 23] can be reformulated in terms of the angular redistribution probabilities.

An alternative model was suggested in [4, 5], where the angular distribution of cis-isomers
is assumed to be stationary and isotropic, fcis = (4π)−1. The conditions for this assumption
to be consistent with equations (10) and (11) are

γcis = γ (cis)
p = 0 (13)

and �t−c(n̂, n̂′) = fcis . To ensure that the equilibrium distribution of trans-isomers f (eq)
tr is

represented by f p , this model uses the relation

�α−p(n̂, n̂′) = �p−α(n̂, n̂′) = δ(n̂ − n̂′). (14)

The other angular redistribution probabilities defined in [4, 5] are �
(sp)
c−t (n̂, n̂′) = ftr (n̂, t) and

�
(ind)
c−t (n̂, n̂′) = (4π)−1. Neglecting biaxiality is the final step required to obtain the model in

the original form.
In this paper we consider another simple model. By contrast to the models [4, 5, 18–20, 23],

we take all the angular redistribution operators �t−c and �c−t in the isotropic form:

�
(sp)
c−t (n̂, n̂′) = �

(ind)
c−t (n̂, n̂′) = �t−c(n̂, n̂′) = 1

4π
≡ fiso. (15)
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Since the anisotropy of cis-fragments has been neglected in (7), it is reasonable to suppose
that the equilibrium distribution of cis-molecules is also isotropic, f (eq)

cis = fiso, whereas
the equilibrium angular distribution of trans-fragments is determined by the polymer system:
f (eq)
tr = f p . From the above discussion this assumption on the equilibrium state implies using

the relations (13)–(14). Equations (9)–(12) can now be combined with (13)–(15) to yield the
system of kinetic equations:

ntr
∂ ftr

∂ t
= (〈Ptr 〉tr − Ptr )ntr ftr + (γc + qc I )ncis ( fiso − ftr ) + γtr ntr ( f p − ftr ), (16)

ncis
∂ fcis

∂ t
= ntr 〈Ptr 〉tr ( fiso − fcis), (17)

∂ f p

∂ t
= γpntr ( ftr − f p), (18)

where γp ≡ γ (tr)
p .

At this stage we have equation (9) for the fractions and system (16)–(18) for the angular
distribution functions. It is now our task to describe the temporal evolution of photoinduced
anisotropy in terms of the components of the order parameter tensor [26]

Si j (n̂) = 2−1(3ni n j − δi j). (19)

Multiplying (16)–(18) by Si j (n̂) and integrating the result over the angles will give a set
of equations for the averaged order parameter components S(α)

i j ≡ 〈Si j (n̂)〉α . The simplest
case occurs for the order parameters of cis-molecules. From (17) we deduce the equation for
S(cis)

i j :

ncis

∂S(cis)
i j

∂ t
= −ntr 〈Ptr 〉tr S(cis)

i j . (20)

Rotational diffusion of cis-molecules can be taken into account by replacing the coefficient on
the right-hand side of (20) with ntr 〈Ptr 〉tr + 6Dr , where Dr is the rotational diffusion constant.
From (20) and (17) the initially isotropic angular distribution of cis-groups, fcis(0) = fiso

and S(cis)
i j (0) = 0, remains unchanged in the presence of irradiation at t > 0. In this case the

cis-molecules will be at equilibrium in the course of irradiation.
By applying the above procedure to (16) and (18) we obtain the following system:

ntr

∂S(tr)
i j

∂ t
= −2/3qt Iuntr G(tr)

i j;xx − ncis(γc + qc I )S(tr)
i j + γtr ntr (S(p)

i j − S(tr)
i j ), (21)

∂S(p)

i j

∂ t
= −γpntr (S(p)

i j − S(tr)
i j ), (22)

where G(α)

i j;mn is the order parameter correlation function (correlator) defined as follows:

G(α)

i j;mn = 〈Si j (n̂)Smn(n̂)〉α − S(α)
i j S(α)

mn . (23)

These functions characterize response of the side groups to the pumping light.
Equations (21)–(22) will give the system for the components of the order parameter tensor,

if a closure can be found linking the correlation functions and S(α)

i j . The simplest closure can
be obtained by writing the products of the order parameter components as a sum of spherical
harmonics and neglecting the high-order harmonics with j > 2, where j is the angular
momentum number. This is equivalent to truncating the expansion for the angular distribution
function ftr over the spherical harmonics. Applying this procedure to the diagonal order
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parameter components gives the following parabolic approximation for the order parameter
autocorrelators [20]:

G(tr)

ii;ii ≡ Gii ≈ 1/5 + 2/7Si − S2
i , Si ≡ 〈Sii 〉tr . (24)

It is known [26] that the values of Si lie in the range from −0.5 to 1 and the lowest-order
approximation (24) is valid only if Si is far from the boundary values of the interval [−0.5; 1].
Otherwise the approximation fails and the expression on the right-hand side of (24) becomes
negative when Si approaches −0.5 or 1. Since the autocorrelators Gii must be non-negative,
the latter leads to physically absurd results.

The experimental data considered in the subsequent section show that Sx can be about
−0.4. This is well beyond the range of validity of the lowest-order approximation and we
need to modify the expression (24). Our assumption is that it can be done by rescaling the
order parameter components: Si → λSi , where the coefficient λ can be computed from the
condition that there are no fluctuations provided the molecules are perfectly aligned along the
co-ordinate unit vector êi : Gii = 0 at Si = 1. From (24) the value of λ is (1 + 0.6

√
30)/7.

We can estimate the accuracy of this procedure by assuming the Maier–Saupe
parametrization for the distribution function ftr :

ftr = N−1 exp

(∑
i, j

ci j Si j (n̂)

)
, (25)

N = 4π

∫ 1

0
exp[(c1 − (c2 + c3)/2)(3τ 2 − 1)/2]I0(3(c3 − c2)(1 − τ 2)/4) dτ, (26)

where N is the normalization coefficient, ci are the eigenvalues of the tensor ci j and I0(x) is
the modified Bessel function of the zero order [27]. The representation (25) is taken in the
form of distribution functions used in the variational (Maier–Saupe) mean-field theory of liquid
crystals [26, 28]. So, the parametrization (25) can be considered as a reasonable approximation
for the angular distribution of the mesogenic trans-groups in LC azopolymers.

The expression (26) can now be used to compute the order parameters and the correlators
as functions of ci from the formulae

Si = ∂ ln N

∂ci
, Gi j = ∂2 ln N

∂ci∂c j
, (27)

where Gi j ≡ G(tr)

ii; j j . Equation (27) will yield the dependences Gi j(Si ) as functions defined
in the parametric form and the accuracy of the modified parabolic approximation can be
numerically estimated. Leaving aside the details of numerical calculations, the result is that
the mean square relative error is below 5%. So, we have a reasonably good approximation for
the correlators of the mean-field distributions (25).

By using the modified parabolic approximation for the correlators, we can write down the
resulting system for the diagonal components of the order parameter tensor in the final form:

ntr
∂S

∂ t
= −2u/3qt I (5/7 + 2λ/7S − λ2 S2)ntr − (γc + qc I )ncis S + γtr ntr (Sp − S), (28)

ntr
∂�S

∂ t
= 2u/3 qt Iλ(2/7 + λS)ntr �S − ncis(γc + qc I )�S + γtr ntr (�Sp − �S), (29)

∂Sp

∂ t
= −γpntr (Sp − S), (30)

∂�Sp

∂ t
= −γpntr (�Sp − �S), (31)

where S ≡ 〈Sxx 〉tr , �S ≡ 〈Syy − Szz〉tr , Sp ≡ 〈Sxx 〉p and �Sp ≡ 〈Syy − Szz〉p.
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Figure 1. Dependences of (a) the principal absorption coefficients and (b) the absorption order
parameters on the irradiation time at λex = 488 nm and I = 2 W cm−2. Theoretical curves for
the order parameters and the absorption coefficients are calculated at γc = 0.0, r ≡ qc/qt = 60.0,
qt I = 0.01 and u = 38.6.
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Figure 2. Dependences of (a) the principal absorption coefficients and (b) the order parameter
components on the irradiation time at λex = 365 nm and I = 3 mW cm−2. Theoretical curves for
the diagonal components of the order parameter tensor and the absorption coefficients are calculated
at γc = 0.0, r ≡ qc/qt = 0.1, qt I = 0.06 and u = 8.4.

3. Numerical results

In this section we demonstrate how our model can be employed to interpret the experimental
data of the UV absorption measurements for different irradiation doses. For this purpose we will
use the data obtained by Yaroshchuk and co-workers (Institute of Physics of NASU, Ukraine).
Since the experimental procedure has been described in [20] and a more comprehensive study
is the subject of a joint publication [29], only a brief summary will be given below.

According to [20], the normally incident pumping UV light used in the experiments is
propagating along the z-axis and is linearly polarized with the polarization vector E parallel to
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the x-axis. The irradiation was provided in several steps followed by absorption measurements
after the waiting time, taken to be longer than 15 min. These measurements were carried out to
yield the optical density components Dx and Dy for the testing beam which is linearly polarized
along the x- and y-axes, respectively. The wavelength of the testing light was tuned to the
absorption maximum of azobenzene chromophores at λt = 343 nm. The principal absorption
coefficients Di can be related to the concentrations and the order parameters as follows:

Di ∝ 〈σ (tr)
ii 〉tr ntr + σ (cis)ncis ∝ (1 + u(a)(2Si + 1)/3)ntr + qct ncis , (32)

where Si ≡ 〈Sii 〉tr ; u(a) is the absorption anisotropy parameter and qct is the ratio of σ (cis) and
σ

(tr)
⊥ at the wavelength of probing light.

The lifetime of the cis-fragments was found to be much longer than the periods examined.
So, we can safely take the limit of long-living cis-molecules and neglect γc in our calculations.
In this case the photoselection mechanism discussed in section 1 can be thought to dominate
the process of photo-reorientation. There are, however, two sets of experimental data measured
at two different wavelengths of the pumping UV light: λex = 488 and 365 nm. These data are
shown in figures 1(a) and 2(a), respectively.

Figure 1(a) presents the case in which the wavelength of light is far from the absorption
maximum and dependences of the absorption coefficients Dx and Dy on the irradiation time
are typical of a photo-orientation mechanism. In this case the fraction of cis-molecules is
negligible and a sum of all the principal absorption coefficients, Dtot = Dx + Dy + Dz , does
not depend on irradiation doses. For the photosteady state, where D(st)

y = D(st)
z , this will yield

the relation

Dtot = D(st)
x + 2D(st)

y = Dx + Dy + Dz . (33)

The absorption component Dz depicted in figure 1(a) was estimated by using (33). In addition,
figure 1(b) shows the absorption order parameters S(a)

i computed from the expression

S(a)
i = 2Di − D j − Dk

2(Dx + Dy + Dz)
, i �= j �= k. (34)

From (32) with ncis ≈ 0 these order parameters are proportional to Si : S(a)

i = u(a)/(3+u(a))Si .
By contrast, referring to figure 2(a), it is seen that both experimental dependences Dx and

Dy are decreasing functions of the irradiation time under the wavelength is near the maximum
of the absorption band with λex = 365 nm. It indicates that in this case POA is governed by the
mechanism of photoselection. So, we have the process of photo-reorientation characterized
by two different mechanisms depending on the wavelength of pumping light.

In order to characterize the regime of POA, we can use the fraction of cis-fragments in
the photo-stationary state. From (9) this fraction is given by

n(st)
cis = 3 + u(1 + 2Sst )

3(r + 1) + u(1 + 2Sst )
, (35)

where r ≡ (γc + qc I )/(qt I ), Sst ≡ S(st)
x and the corresponding value of the order parameter is

a solution of the following equation:

2u(1/5 + 2λ/7Sst − λ2 S2
st ) = −Sst (3 + u(1 + 2Sst )), (36)

deduced by using equations (28) and (30).
When γc = 0, the parameter r in (35) is the ratio of qc and qt . At small values of r

it will yield the fraction n(st)
cis that is close to unity and we have the kinetics of POA in the

regime of photoselection. In the opposite case of sufficiently large values of r the photosteady
fraction of cis-molecules will be very small, that is typical of the photo-orientation mechanism.
This effect is demonstrated in figures 1 and 2. The figures show theoretical curves computed
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Table 1. Photochemical parameters.

λex = 365 nm λex = 488 nm

I (W cm−2) 3 × 10−3 2
σcis (cm2) 1.5 × 10−17 3.14 × 10−18

σ (tr)/σcis 57.2 0.5

σ
(tr)
‖ /σ

(tr)
⊥ 9.4 39.6


cis→trans (%) 15 10

trans→cis (%) 10 5

at different values of r : 60.0 and 0.1, respectively. From (35) and (36) the corresponding
fractions of cis-fragments in the photostationary state can be estimated at about 0.02 and 0.96.

The theoretical curves are computed by solving the rate equations deduced in the previous
section. Initial values of the order parameters S(0) and �S(0) are taken from the experimental
data measured at λex = 488 nm. Since the system is initially at the equilibrium state, the
remainder of the initial conditions are Sp(0) = S(0), �Sp(0) = �S(0), ntr (0) = 1 and
ncis(0) = 0.

The anisotropy of the non-irradiated polymer is uniaxial with the optical axis normal to the
film surfaces: S(a)

z (0) = 0.07 > S(a)
x (0) = S(a)

y (0) = −0.035, whereas the uniaxial structure
of the photosaturated state is isotropic in the plane perpendicular to the polarization vector of
UV light: S(st)

x < S(st)
y = S(st)

z . So, as is shown in figures 1 and 2, the transient anisotropic
structures are inevitably biaxial. As in [16, 20–23], these biaxial effects are related to the initial
anisotropy of the polymer film and the orientational structure in the photosteady state.

Numerical calculations in the presence of irradiation were followed by computing the
stationary values of S and �S to which the order parameters decay after switching off the
irradiation at time t0. The kinetic equations in the absence of irradiation can be easily
solved to yield the stationary values of Si and S(p)

i :
(
γpntr (t0)Si (t0) + γtr S(p)

i (t0)
)
/γ , where

γ ≡ γpntr (t0) + γtr . There is no further relaxation after reaching this stationary state and its
anisotropy is long-term stable. The experimental estimate for the relaxation time characterizing
decay of Di(t) to its stationary value after switching off the irradiation is about 1 h. The
theoretical value of this relaxation time is 1/γ . So, in the simplest case, we can assume both
relaxation times, τp (γp = 1/τp) and τtr (γtr = 1/τtr ), to be equal to 120 min.

There are a number of additional photochemical parameters that enter the model and are
listed in table 1. The table shows the estimates for absorption cross section of cis-molecules
σ (cis) and average absorption cross section of trans-fragments, σ (tr) = (σ

(tr)
‖ + 2σ

(tr)
⊥ )/3,

obtained from the UV spectra of the polymer dissolved in toluene. We shall omit details on
the method of evaluation which is briefly described in [20].

For this polymer the absorption anisotropy parameters and the quantum efficiencies are
unknown and need to be fitted. We used the value of Sst as an adjustable parameter, so that the
anisotropy parameters u and u(a) can be derived from (36) and from the experimental value of
the absorption order parameter S(a)

st measured at λex = 488 nm in the photosteady state. The
numerical results presented in figures 1 and 2 are computed at u(a) = 11.0 and qct = 2.15.
Note that the quantum efficiencies are of the same order of magnitude as the experimental
values for other azobenzene compounds [30].

4. Discussion

The general approach to the kinetics of POA presented in section 2 is based on rather
phenomenological considerations. The resulting structure of phenomenological models is



Kinetics of photoinduced anisotropy in azopolymers 13427

determined by the angular redistribution probabilities. We found that the known models can
be formulated by this means. Some of the probabilities define the equilibrium distributions
and the relaxation after switching off the irradiation. The angular redistribution operators that
enter the photoisomerization rates can be employed to introduce self-consistent fields.

Another key element of our approach is the order parameter correlation functions that
enter the equations for the order parameter components. The correlators describe response of
the trans-molecules to the exciting light and determine the properties of the photosaturated
state. We suggested the parabolic approximation to have the correlators expressed in terms of
the order parameters. This simple approximation appears to give sufficiently accurate results
for the correlators of the angular distribution functions taken in the Maier–Saupe form used
in the mean-field theory of liquid crystals. We found that using the parabolic approximation
to describe POA in LC azopolymers does not lead to considerable discrepancies between the
theory and the experimental data. The approximation, however, cannot be generally valid
and a more sophisticated treatment will require the knowledge of the microscopic details to
compute the correlators from the Dyson equations.

Our simple model relies on the assumption that the cis fragments are isotropic and do
not affect the ordering kinetics directly. By contrast to the mean-field models [18, 19, 23],
in this case the presence of long-living angular correlations is irrelevant for cis-molecules.
Certainly, this is the simplest case to start from before studying more complicated models.
The model depends on a few parameters that enter the equations and that can be estimated
from the experimental data. Only the absorption anisotropy parameters and the quantum yields
need to be adjusted.

From the comparison between the experimental data and the theoretical results we can
conclude that the theory correctly captures the basic features of POA in azopolymers. The
model takes into account the long-term stability of POA and the biaxiality effects. It predicts
that in the limit of long-living cis-fragments the regime of POA will be governed by the
parameter r which is the ratio of 
cis→transσ

(cis) and 
trans→cisσ
(tr)
⊥ .

For large values of r the fraction of cis-molecules in the photosaturated state is negligible
and dependences of the principal absorption coefficients on illumination doses are typical for
the kinetics in the regime of photo-orientation. This means that the cis→trans transitions
stimulated by the exciting light will efficiently deplete the cis-state and the absorption
coefficients are controlled by the terms proportional to the order parameter of trans-molecules
(see equation (32)).

By contrast, if the value of r is sufficiently small, there is nothing to prevent the cis-
state from being populated under the action of UV light and the fraction of cis-molecules
approaches unity upon illumination. In this case the contribution of trans-isomers to the
absorbance becomes negligible as the illumination dose increases and we have the kinetics of
POA dominated by the photoselection mechanism.

We have thus demonstrated that the predictions of the theory are in good agreement with
the experimental data, where the difference in the photochemical parameters at λex = 365 and
488 nm can be attributed to the interplay between ππ∗ and nπ∗ transitions of the azobenzene
moieties. Our findings confirm the conclusion that the dependence of photoisomerization rate
on molecular axis orientation (see equations (5) and (6)) plays a leading part in the process of
photo-reorientation.

5. Conclusion

The overall strategy used throughout this paper is as follows. We have analysed the general
structure of phenomenological models to find out how the models incorporate different physical
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assumptions. Then we have studied the simple model and compared the results of calculations
with the experimental data.

Recently we have applied this strategy to describe the photo-orientation regime of POA
on the basis of the different model that takes into account the presence of additional constraints
in the polymer [20]. Since the method turned out to be applicable to the different regimes of
POA and to the case of large order parameters, we have a useful tool for studying photoinduced
ordering processes in azopolymers.

But even the very possibility to describe the kinetics in terms of one-particle distribution
functions needs to be justified by a more detailed theory. The idea of looking for a closure for
the correlators is closely related to the mean-field approach. It is likely that this approach can
be used to recover the structure of models and we hope that this work will stimulate further
progress in this direction.
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